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Appendix

A1 Available data from GEMStat (1990–2010)

Appendix 
Appendix A

Table A.1: Overview of data availability in the time period 1990-2010 based on GEMStat. Stations were assigned to global river 
basins (Source: Major River Basins of the World/Global Runoff Data Centre. Koblenz, Germany: Federal Institute of Hydrology 
BfG). Maximum number of measured parameters = 26. Number of measurements = all measurements of all parameters of all 
stations within a river basin.

Subregion River basin
Data
available
from–to

No. of 
stations/
RB

No. of measured 
parameters

No. of
measurements

North-Africa
Nile

Oum-Er-Rbia River

Sebou 

1990-2010

1994-2010

1990-2010

2

1

2

15

13

14

425

2,186

3,098

South-Africa

Groot Kei

Groot Vis

Incomati

Indian Ocean Coast

Limpopo

Olifant

Orange

South Atlantic Coast

Tugela

1990-2010

1990-2010

1990-2009

1990-2010

1990-2010

1990-2010

1990-2010

1990-2010

1990-2010

1

1

1

3

7

1

5

1

2

9

9

9

9

9

9

10

9

10

1,394

1,686

1,452

1,730

4,877

972

6,281

1,874

1,734

West-Africa

Niger

Pra

Senegal

Volta

1992-1996

1991-1994

1991-2000

1991-1995

7

1

5

1

12

11

11

12

463

283

129

331

Central-America

Colorado (Caribbean Sea)

Grijalva-Usumacinta

Panama Canal

Panuco

Papaloadan

Rio Boqueron

Bravo

Santiago-Lerma-Chapala

1990-1996

1990-1996

2003-2010

1990-1996

1990-1996

2003-2010

1990-1996

1990-1996

17

2

51

1

1

1

2

1

14

15

14

15

16

14

16

16

2,790

1,366

16,296

369

622

1,075

1,134

257

North-America

Alabama

Alsek

Churchill

Fraser

Hudson

Mackenzie

Mississippi

Nelson-Saskatchewan

Bravo

Sacramento

Skeena

St. Croix

St. John

St. Lawrence

Susquehanna

Yukon

1990-2001

1992-2004

1990-1997

1990-2004

1990-2001

1990-2004

1990-2005

1990-1997

1990-2005

1990-2002

1990-2004

1990-1996

1992-1994

1990-2005

1990-1995

1990-2005

4

1

1

3

8

4

59

3

16

12

1

1

1

9

1

6

2

5

9

8

9

9

11

9

10

10

7

6

7

9

10

9

307

172

181

1,371

383

749

5,427

600

2,509

694

561

281

69

891

307

490
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Subregion River basin
Data
available
from–to

No. of 
stations/
RB

No. of measured 
parameters

No. of
measurements

South-America

Amazon

Doce River

Guandu River

Jequitinhonha River

Meia Ponte River

Oyapock

Paraguacu River

Parana

Parnaiba

Sao Francisco

Tocantins

Uruguay

1993–2010

1997–2010

2001–2010

1997–2010

2001–2010

2004

2008–2010

1990–2010

1992–2010

1990–2010

1996–2010

1990–2010

461

3

1

3

1

4

2

169

20

45

82

37

17

14

11

14

11

5

11

19

14

16

15

15

7,223

1,578

1,198

1'457

357

20

240

19,660

500

2,487

1,176

1,479

East-Asia

Bei Jiang/His

Chang Jiang

Han

Hwang Ho

Japan*

Liao

Min

Qiantang

1990–1996

1990–1997

1990–2010

1990–1997

1990–2010

1990–1997

1990–1996

1990–1996

2

3

3

2

17

1

1

1

15

17

13

15

18

12

12

12

1,268

2,276

2,939

1,306

31,117

892

810

655

South-Asia

Cauvery

Chaliyar

Ganges-Brahmaputra-Meghna

Godavari

Indus

Krishna

Mahandi

Mahi

Narmada

Penner

Periyar

Sabarmati

Sahyadri

Sri Lanka*

Subarnerekha

Tapti

1990–2008

1990–2008

1994–2010

1990–2008

1990–2003

1990–2008

2001–2008

1990–2008

1990–2008

1990–2008

1990–2008

1990–2008

1990–2008

2003–2010

1992–2008

1990–2008

8

2

5

6

4

7

5

2

5

1

2

3

10

27

4

4

15

15

10

15

15

15

15

15

15

15

15

15

15

12

14

15

12,112

4,124

513

8,273

4,589

13,664

2,960

3,450

6,260

991

4,126

4,082

8,329

12,198

3,915

6,503

South-East-Asia
Chao Phraya

Indonesia*

Mekong

1990–1993

1990–1994

1990–2009

3

6

72

11

15

14

308

2,163

50,107

East Europe

Amur

Danube

Don

Dvina-Pechora

Kolyma

Lena

Narva

Ob

Oder

Vistula

Volga

Yenisey

1990–2010

1990–1996

1990–2010

1990–2010

1990–2010

1990–2010

1990–2010

1990–2010

1992–2003

1992–2003

1990–2010

1990–2010

2

2

1

5

1

2

2

9

3

3

4

5

8

9

8

8

7

7

7

7

9

8

7

7

822

937

347

3,070

590

620

391

5,611

3,297

3,168

2,059

3,608
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Subregion River basin
Data
available
from–to

No. of 
stations/
RB

No. of measured 
parameters

No. of
measurements

Northern Europe

Dee

Denmark*

Forth

North West England

Northumbria

Oulu

Pasvik

Severn

South West

Thames

Torne

Trent

Tweed

1990–2005

1990–1996

1990–2005

1990–2005

1990–1995

1993–1995

1993–1995

1990–2005

1990–2005

1990–2005

1990–1998

1990–2005

1990–1996

1

4

1

1

3

1

1

1

1

1

2

1

1

9

5

9

10

4

3

3

11

11

11

7

11

10

923

1,070

1,165

1,213

598

101

95

1,154

1,247

1,110

304

1,253

827

Southern Europe

Douro

Ebro

Guadalquivir

Guadiana

Italy*

Po

Portugal*

Tagus

Turkey*

1990–1995

1990–1995

1990–1995

1990–1995

1990–1995

1990–1995

1990–1994

1990–1995

1993–2002

7

3

3

4

8

8

2

6

7

5

5

5

5

6

6

5

10

4

1,799

991

903

1,047

1,609

2,295

478

1,872

1,170

Western Europe

Danube

Elbe

Garonne

Loire

Meuse

Oder

Rhine

Rhone

Schelde

Seine

Weser

Yser

1990–1996

1990–1995

1990–1996

1990–1996

1990–2010

1993–1995

1990–2003

1990–2002

1990–2010

1990–1996

1990–1995

2001–2010

7

4

4

5

18

1

19

8

49

4

2

3

9

9

8

8

12

4

12

9

13

9

9

11

660

830

1,224

2,062

7,178

138

10,708

4,729

25,045

1,904

666

1,671

*Not all of GEMStat stations could be assigned to a river basin. In this case, the number of stations, measurements, and parameters of a 
country were listed. 

Buch_UNEP_zAnnex_1504.indd   5 09.05.16   17:08



Appendix-6

A Snapshot of the World’s Water Quality: Towards a global assessment | UNEP report

Appendix B
B1 WorldQual – model description 

B1.1 The modelling framework

WorldQual is a continental scale water quality model 
used to increase understanding of large scale water 
quality patterns, support large scale assessments of 
water quality degradation, and relate water quality 
degradation to threats to human health, food security, 
and aquatic ecosystems.

WorldQual simulates loadings and in-stream 
concentrations of different water quality parameters 
on a 5 by 5 arc minute spatial grid (about 9 by 9 km at 
the equator). It has been tested and applied in several 
previous studies, e.g. Malve et al. (2012), Punzet at al. 
(2012), Reder et al. (2013), Reder et al. (2015), Voß et 
al. (2012), and Williams et al. (2012). 

WorldQual calculates loadings to rivers and the 
resulting in-stream concentrations based on the 
hydrological information simulated by WaterGAP3 
(see below) and based on standard equations of water 
quality dynamics. It has a monthly temporal resolution. 
Up to now it has been used to simulate biochemical 
oxygen demand (BOD5), faecal coliform bacteria (FC), 
total phosphorus (TP), total nitrogen (TN) and total 
dissolved solids (TDS) (Malve et al., 2012; Voß et al., 
2012; Reder et al., 2013; Reder et al., 2015; Williams 
et al., 2012).

WorldQual is linked to a global integrated water model 
“WaterGAP3” within a common modeling framework. 

WaterGAP3 is made up of two main components: (i) 
a water balance model to simulate the characteristic 
macro-scale behavior of the terrestrial water cycle 
in order to estimate water availability (Alcamo et al., 
2003; Müller Schmied et al., 2014; Schneider et al., 
2011; Verzano 2009; Verzano et al., 2012), and (ii) a 
water use model to estimate water withdrawals and 
consumptive water uses for agriculture, industry, and 
domestic purposes (aus der Beek et al., 2010; Flörke 
et al., 2013). WaterGAP3 also operates on a 5 x 5 arc 
minute spatial resolution (see Figure B.1).

Using a time series of climatic data as input, the 
hydrological model calculates the daily water balance 
for each grid cell, taking into account physiographic 
characteristics such as soil type, vegetation, slope, 
and aquifer type. Runoff generated on the grid cells 
is routed to the rier basin outlet on the basis of a 
global drainage direction map (Lehner et al., 2008), 
taking into account the extent and hydrological 
influence of lakes, reservoirs, dams, and wetlands. 
The climate input for the hydrology model consists 
of precipitation, air temperature, and solar radiation. 
These data come from the WATCH data set (Water and 
Global Change) applied to ERA-Interim data (WFDEI) 
for the time period 1979–2010 (Weedon et al. 2014). 
The climate data have a temporal resolution of one 
day and a spatial resolution of 0.5° by 0.5° (latitude 
and longitude, respectively) downscaled to the 5 arc 
minute grid cells.

Figure B.1: Overview of the WaterGAP3 modelling framework (Verzano 2009, modified).

spatial: 5’
temporal: daily

results: daily / monthly

spatial: 5’
temporal:  monthly

results: monthly

WaterGAP3
Hydrology Model

spatial: 5’         temporal: daily       results: daily / monthly / yearly

agriculture

WorldQual
Water Quality Model

WaterGAP3
Water Use Models

domestic manufacturing electricity 
production

discharge, runoff, 
flow velocity

consumptive
water use

return
flow
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B1.2 Pollution loadings

B1.2.1 Sources of pollution

Loadings are calculated for point sources and diffuse 
sources for the following parameters:

•	 faecal coliform bacteria (FC; pathogen pollution),
•	 biological oxygen demand (BOD; organic 

pollution),
•	 total dissolved solids (TDS; salinity pollution), and
•	 total phosphorous (TP; eutrophication).

Figure B.2 illustrates the point and diffuse sources 
represented in the WorldQual model. Point sources 
include domestic sewered wastewater, wastewater 
from manufacturing industries and urban surface 
runoff. Diffuse sources include agriculture and 
background. The model also takes into account non-
sewered domestic sources, of which some sources are 
handled as point sources, and some as diffuse sources 
(See B1.2.3).

point sources diffuse sources

Domestic

•	 sewered

•	 non-sewered

Manufacturing

•	 wastewater

Domestic

•	 non-
sewered

Agriculture

•	 inorganic fertilizer

•	 livestock wastes

•	 irrigation return flows

Urban 
surface 
runoff

Background

•	 atmospheric 
deposition

•	 weathering

•	 vegetation and 
soil

Figure B.2: Pollutant loading sectors in WorldQual categorized as either point sources or diffuse sources.

B1.2.2 Domestic sewered sector

Loadings from the domestic sewered sector are 
calculated on a grid cell level by multiplying a per 
capita emission factor (BOD, FC, TDS, and TP) with the 
urban and rural populations connected to a sewage 
system (Williams et al., 2012). The resulting domestic 
sewered loadings are then abated depending on 
the level of wastewater treatment. National values 
for percentages of primary, secondary, and tertiary 
wastewater treatment of sewage treatment plants 
(STPs) are downscaled to the grid-cell level to define 
a cell-specific reduction rate. Additionally, reduced 
treatment efficiency due to deficiencies of STPs is 
taken into account. Data are available from the WHO/
UNICEF Joint Monitoring Programme (2013) for the 

years 1990, 2000 and 2010. These data are applied 
to the years 1990–1995, 1996–2004 and 2005–2010, 
respectively. Further information on efficiencies of 
STPs were collected for several countries and applied 
as continental averages (Table B.1).

Gridded population data are available from the 
History Database of the Global Environment (HYDE) 
version 3.1 (Klein Goldewijk, 2005; Klein Goldewijk 
et al., 2010) for the time period 1990–2005. For the 
remaining period 2006–2010, national data from 
UNEP (2015) were allocated to grid cells based on the 
gridded population density of the year 2005.

BOD per capita emission factors were collected from 
the literature. If no data were available, an average per 
capita emission factor was calculated per region.

Table B.1: Default sewage treatment plants efficiency.

Region Regional average [%] Reference

Africa 58
Murray and Drechsel (2011), UNEP/GEF (2009), FAO and WHO (2003), 
WHO CEHA (2005), Water Affairs South Africa.(2011)

Asia 59
Tacis (2000), CPCB (2005), CPCB (2009), MoP COSIT (2011), UNECE 
(2009), Government of Mongolia (2012), Shukla et al. (2012), Murtaza 
and Zia (2012), UNDESA-DSD (2004), UNECE (2012 a, b)

Latin America 47 UNEP (1998), Ojeda and Uribe (2000), Lopera Gomez et al. (2012)
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Table B.2: Default BOD per capita emission factors per GEO region.

Region
Regional average 
[g/cap/day]

Reference

Africa 37 Metcalf & Eddy et al. (2014), UNEP (2000), Williams et al. (2012)

Asia 40 IPCC (2006), Williams et al. (2012)

Latin America 56 Metcalf & Eddy et al. (2014), Williams et al. (2012)

Regional numbers (Table B.3) have been derived 
from the concentration of FC in human excreta taking 
into account differences in diet, climate, and state 
of health (Feachem et al., 1983). Assumed reduction 
rates for primary, secondary, and tertiary treatment 
are intermediate values from Dorner (2004); Endale et 
al. (2012); George et al. (2002), Hwang (2012), Qureshi 
and Qureshi (1990), Saleem et al. (2000), Samhan et 

al. (2007). Several values within the range given by 
the different references for the human per capita FC 
excretion were tested with the model. During this 
testing all parameters except the human per capita 
excretion were kept constant. Best results of simulated 
FC in-stream concentrations compared to measured 
FC in-stream concentrations were achieved with the 
numbers provided in Table B3 (see Reder et al., 2015).

Table B.3: Default FC per capita emission factors per GEO region. Regional differences arise from diet, climate, and state of health.

Region
Regional average 
[cfu*/cap/year]

Reference

Africa 170*1010 Feachem et al. (1983), Finegold (1969), Maier et al. (2009), Moore 
and Holdeman (1974); Reder et al. (2015), Schueler and Holland 
(2000), van Houte and Gibbons (1966), Zubrzychi and Spaulding 
(1962).

Asia 700*1010

Latin America 500*1010

* cfu: colony forming unit

Based on UNEP (2000) and Mesdaghinia et al. (2015) a 
TDS emission factor of 100 g/cap/day was assigned to 
all three continents. 

The TP per capita emission factors were calculated 
as follows. First, the protein per capita consumption 
per country and year was used from FAOSTAT (FAO, 
2014). It is assumed that about 16 per cent of the 
protein is nitrogen whereof, on average, 36.5 per cent 
is excreted by the human digestive tract (van Drecht 
et al., 2009). Second, the TP per capita emission is 
about one-sixth of the nitrogen emission (van Drecht 
et al. 2004). Continent-specific averages of protein 
consumption were taken in case country-specific 
protein consumption data were not available.

B1.2.3 Domestic non-sewered sector

For the human waste produced where sewers are not 
used, three types of sanitation practices are accounted 
for: (i) waste produced with some type of private on-
site disposal, such as septic tanks, pit toilets, bucket 
latrines etc. (diffuse source), (ii) waste produced where 
people practice open defecation (diffuse source), and 
(iii) waste produced where people use hanging latrines 
(point source).

Waste loadings from onsite disposal (e.g. septic tanks) 
are calculated by multiplying a per capita emission 
factor with the population connected to these disposal 
types. A release factor is applied to estimate the final 
loading which enters the stream.

Waste loadings from open defecation are calculated 
by multiplying the emissions per capita per year times 
a release rate of 0.1 per cent (from Section B1.2.7). 
This annual loading is then transported to a stream on 
a monthly basis proportional to monthly runoff from 
WaterGAP3. The emissions per capita for BOD, FC, 
TDS, and TP follow the assumptions in Section B1.2.2.

Waste loadings from hanging latrines are calculated by 
multiplying the emissions per capita per year times the 
population using this sanitation practice. No reduction 
takes place as the feces are directly disposed into the 
surface waters.

Data on different sanitation practices are derived from 
the WHO/UNICEF Joint Monitoring Programme (JMP) 
for Water Supply and Sanitation country files between 
1980 and 2011 (JMP, 2013), national databases, 
reports, and a literature search. As for the domestic 
sewered sector, data are only available for the years 
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1990, 2000, and 2010, and assumed to be unchanged 
over 5 year periods.

B1.2.4 Manufacturing sector

Loadings from the manufacturing sector are calculated 
by multiplying the average raw effluent concentration 
times the return flow from manufacturing industries 
(Williams et al., 2012). The manufacturing load is 
reduced by a reduction factor depending on the 
treatment level following the assumptions made for 
the domestic sector. Treatment rates and deficiencies 
of sewage treatment plants are assumed to be the 
same as in the domestic sewered sector. Manufacturing 
wastewater volumes are calculated by the water use 
model of WaterGAP3.

A representative value of 400 mg/l was assigned to the 
effluent concentration of BOD from industrial sources 
based on literature (Al-Kdasi et al., 2004; Azmi and 
Yunos, 2014; EEAA, 2002; Haydar et al., 2014; Mortula 
and Shabani, 2012; UNEP, 1998; UNEP, 2000; Williams 
et al., 2012).

For TDS, the effluent concentration was assumed to be 
3000 mg/l according to Al-Kdasi et al., 2004; Azmi and 
Junos, 2014; EEAA, 2002; Haydar et al., 2014; Jain et 
al., 2003; Kang and Choo, 2003; Metcalf & Eddy, 2014; 
Mortula and Shabani, 2012; Tas et al., 2009; Williams 
et al., 2012).

For FC, the effluent concentration was assumed to 
3.55*106 cfu/100ml according to Ayoub et al. (2000), 
Bordner and Carrol (1972), Caplenas et al. (1981), 
Caplenas and Kanarek (1984), Clark and Donnison 
(1992), Das et al. (2010), Ekundayo and Fodeke (2000), 
Gauthier and Archibald (2001), Hoyle-Dodson (1993), 
Knittel et al. (1977), McCarthy et al. 2001), Megraw 
and M. Farkas (1993), Pramanik and Abdullah-Al-
Shoeb (2011).

For TP raw effluent concentrations from Europe (6.2 
mg/l) are also applied to industrial sources in Africa, 
Asia and Latin America (Demirel et al., 2005; Johns, 
1995; Gönen, 2005; Kim et al., 2007).

B1.2.5 Urban surface runoff

Loadings generated from urban surface runoff are 
calculated by multiplying the typical event mean 
concentration by the urban surface runoff produced 
on each cell (Williams et al., 2012). The resulting load 
is assumed to be reduced to the same treatment 
levels assumed for the domestic sewered sector. The 
hydrology module of WaterGAP3 provides the urban 
surface runoff rates.

Assumptions and literature for the event mean 
concentrations (EMCs) of BOD and TDS for different 
sub-regions are shown in Tables B.4 and B.5.

Table B.4: Default BOD event mean concentrations (EMC).

Region/Sub-region Regional EMC* [mg/l] Reference

Northern Africa, South Africa 19 Chrystal (2006)

Central Africa, Eastern Africa, 
Western Africa, Southern Africa 

(except South Africa)
62

Adedeji and Olayinka (2013), Adekunle et al. (2012), 
Alo et al. (2007)

South Africa 12 Chrystal (2006)

West Asia 19 Chrystal (2006)

Asia and the Pacific 105

Choe et al. (2002), Chow et al. (2013), Dom et al. 
(2012), Ho & Quan (2012),Luo et al. (2009), Karn 
& Harada (2001), Lee & Bang (2000), Li (2010), 
Maniquiz et al. (2010), Nazahiyah et al. (2007), 
Sharma et al. (2012), Yusop et al. (2005)

Latin America 12 Derived from Europe
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Table B.5: Default TDS event mean concentrations (EMC).

Region/Sub-region Regional EMC [mg/l] Reference

Africa 178 Wondie (2009)

Asia 246 Sharma et al. (2012), Zope et al. (2008)

Latin America 205 Al-Houri et al. (2011)

FC event concentrations vary widely. For example, 
they were measured to be around 104 cfu/100ml to 
106 cfu/100ml in stormwater runoff in South Africa 
(Jagals, 1997), 109 cfu/100 ml in China (Thomann and 
Mueller, 1987), and 104 to 106 in the USA (Erickson et 
al. 2013). An intermediate value of 106 cfu/100 ml was 
assumed for all three continents.

An average TP event mean concentration of 2.04 mg/l 
was assumed for all three continents based on Lee and 
Bang (2000), Ho and Quan (2012), Luo et. al (2009), 
and Taebi and Droste (2004).

B1.2.6 Agricultural inorganic fertilizer

Inorganic fertilizer is assumed to be applied to all 
agricultural grid cells and is an important source of 
TP loadings. Baseline fertilizer application rates of 
phosphorus were estimated from FAO (2006) for the 21 
different crop types distinguished by the WaterGAP3 
model. The baseline data are representative for the 
time period 1995 to 1999.

For earlier and later time periods, baseline data are 
scaled by national fertilizer application rates (IFA, 2014) 
averaged over 5-years-periods 1990–1994, 2000–2004 
and 2005–2010. (Five year periods are used to smooth 
out uncertainties of annual fertilizer use.)

TP loadings from industrial fertilizer that reach the 
surface water system are calculated as a function of 
land surface runoff and soil loss.

B1.2.7 Agricultural livestock wastes

To calculate the amount of BOD, FC, TDS, and TP 
loadings from livestock (manure) the approach of 
Sadeghi and Arnold (2002) is applied. Here, the 
amount of the relevant constituent in manure is 
multiplied with an appropriate release rate and the 
surface runoff. The amounts of BOD, FC, TDS, and TP 
in different types of manure are derived from ASAE 
(2003) and SCS (1992). To consider different levels of 
animal nutrition on different continents, the amount 
of manure constituents are corrected by a livestock 
conversion factor from FAO (2003) following the 
approach of Potter et al. (2010) for nutrients. For 

FC and BOD the release rates of manure vary with 
manure type and differ according to the source of 
literature (e.g. EPA, 2003; Ferguson et al., 2007). The 
best estimate of release rates was found to be 0.1 per 
cent. Release rates for TP are calculated as a function 
of land surface runoff and soil erosion. The decay of FC 
contained in stored manure or after manure is applied 
to soil is described by Chicks law (Crane and Moore, 
1986). The FC decay rate in this case is assumed to be 
the same as in Europe (Reder et al., 2015). Manure 
application is assumed to take place all year round 
because of the continuous presence of livestock. To 
calculate the wash-off of pollutants from land surfaces, 
the land surface runoff from the hydrology module of 
WaterGAP3 is used.

B1.2.8 Agricultural irrigation

In WorldQual TDS loadings from irrigated agriculture 
were estimated by multiplying a mean irrigation 
drainage concentration by the irrigation surface 
return flows calculated by the water use model of 
WaterGAP3. Mean irrigation drainage concentrations 
show high variations from 1,000 mg/l up to 8,000 
mg/l in Asia. To account for the regional differences, 
salt emission potential classes (SEPC) were defined 
as described in Voß et al. (2012) and Williams et al. 
(2012). The definition of SEPC is based on natural 
salt classes (SC) and the gross domestic product per 
capita classes (GDPC). Natural SC are a combination of 
primary salt enriched soils (S) and arid–humid climate 
conditions (H). The highest SEPC was set to 3,500 mg/l 
for developing countries (Bakker et al., 1999; Chen et 
l., 2011; Irrigation Department Lahore, 2014; World 
Bank, 1999), while the lowest SEPC was set to 165 
mg/l (cf. B1.2.9). These values reflect the range from 
arid regions with salt affected soils and low irrigation 
technique standards (highest SEPC class) to humid 
regions with no salt affected soils, and likely high 
irrigation technique standards (lowest SEPC class).

B1.2.9 Background loadings

A certain amount of phosphorus enters drainage 
basins in the form of atmospheric deposition. In 
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the present study, global gridded estimates of TP 
deposition rates were taken from Mahowald et al. 
(2008). Additionally, natural phosphorus loads also 
originate from weathering. WorldQual’s estimates of 
P-release by chemical weathering are derived from 
data of the global analysis of Hartmann et al. (2014). 

Large amounts of background salinity in rivers come 
from weathering processes or surface salt deposits in 
river basins. Background concentrations of TDS were 
estimated by averaging GEMStat TDS measurements 
from pristine stations and sorting these data according 
to 55 soil types from the FAO Harmonized World 
Soil Database (Fischer et al. 2008). These data were 
then applied as background concentrations in each 
grid cell according to the type of soil in that grid 
cell. For respective soil types, these background TDS 
concentrations ranged between 5 mg/l and 832 mg/l. 
However, about 10 per cent of all river reaches have 
natural background greater than 450 mg/l the level 
used in this pre-study to designate “moderate” salinity 
pollution. For soil types not covered by GEMStat 
measurements, an average background concentration 
of 165 mg/l was used.

B1.3 Calculation of in-stream concentrations

River concentrations are computed by combining 
the loadings of the various substances with the 
dilution capability of the river discharge in each grid 
cell. Non-conservative substances (FC and BOD) 
then decay downstream. Standard one dimensional 
stream equations from Thomann and Mueller (1987) 
as described in Voß et al. (2012) are used for these 
calculations. These equations perform a mass balance 
between loadings and receiving water and account 
for the decay of non-conservative pollutants as they 
travel downstream by assuming first order decay.

The decay coefficient of BOD is assumed to be a 
function of river temperature (Thomann and Mueller, 
1987, Punzet et al., 2012). The decay coefficient of 
FC is assumed to be a function of solar radiation, 
temperature, and the settling rate of bacteria 
(Thomann and Mueller, 1987; Reder et al., 2015). TDS 
is modelled as a conservative substance with no decay.

The final concentration of each grid cell is routed 
towards the river mouth following a high-resolution 
drainage direction map (Lehner et al., 2008).

B1.4 TP retention in surface waters

TP retention is calculated on river basin scale. The 
conceptual approach and the parameter settings 
are based on Behrendt et al. (2002), where nutrient 

retention is empirically calculated with hydraulic load 
(Behrendt and Opitz, 1999). Hydraulic load is defined 
as the annual runoff as calculated by WaterGAP3 
divided by the surface area of the respective lake 
(Hejzlar et al., 2009).

B1.5 Model testing

Data used for model calibration and testing were 
kindly provided from national and international 
databases of the Agencia Nacional de Aguas, Brasil; 
Department of Water and Sanitation, Republic of 
South Africa; Dirección Ejecutiva de la Comisión 
Trinacional para el desarrollo de la Cuenca del Río 
Pilcomayo; Instituto de Hidrología, Meteorología y 
Estudios Ambientales, Colombia; Instituto Nacional 
de Meterologia e Hidrologia (INAMHI), Ecuador; 
Mekong River Commission; Ministerio del Medio 
Ambiente, Gobierno de Chile, Chile; Pollution Control 
Department (PCD), Ministry of Natural Resources 
and Environment, Thailand; Secretaría de Ambiente y 
Desarrollo Sustentable de la Nación (SADS), Argentina; 
United Nations Global Environment Monitoring 
System (GEMS) Water Programme; Water Resources 
Information System of India, India, and literature 
research.

Biochemical Oxygen Demand Model

The BOD model calculations are compared to 
observations in Figure B.3a. This figure contains 
measured data from 2902 Latin American stations (in 
total 36,756 measurements), 21 African stations (in 
total 523 measurements), and 648 Asian stations (in 
total 41,851 measurements). The agreement of model 
outcomes with observations is considered acceptable 
considering the approximations of the model, the 
uncertainties in the data, and the scale of the coverage 
of the model. Thousands of points are quite close to 
the 1:1 line in Figure B.3a but not visible because they 
are overlapping.

An important criterion for judging the performance 
of any model is to consider the purpose of the model 
and modelling application. In the case of this pre-
study, the purpose of the model was not to compute 
concentrations exactly, but to estimate “pollution 
classes” (e.g. low, moderate, severe) as defined in 
Chapter 3, Table 3.8 for BOD, for example. Results 
in this form are more meaningful for assessments 
because they conform to the approach used by 
countries and river basin managers to interpret the 
status of their own freshwaters (national water quality 
standards typically divide the range of water quality 
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conditions into “high”, “low” and “medium” classes of 
water quality).

Figure B.3b shows that the model computes the same 
pollution class for BOD as observed in two-thirds of 
the grid cells with measurements. In more than 80 per 
cent of the grid cells the model computes the correct 
class plus or minus one class.

Faecal Coliform Bacteria Model

The model results of FC versus observations are shown 
in Figure B.4a. The following measurements were 
available for this comparison: 2818 Latin American 
stations (in total 47,888 measurements), 485 African 
stations (in total 14,068 measurements), and 501 
Asian stations (in total 24,577 measurements). Again, 
most of these measurements are close to the 1:1 line, 
but not visible because they overlap.

The model performance as indicated by the scatter 
plot (B.4a), and comparison of FC pollution classes 
(B.4b) is as satisfactory as that of BOD.

Total Dissolved Solids Model

A comparison of calculated versus observed TDS is 
shown in Figure B.5a. The figure is based on a set of 
measurements that were available for Latin America, 
Africa and Asia: 760 Latin American stations (in total 
18,040 measurements), 1,544 African stations (in total 
162,551 measurements), and 655 Asian stations (in 
total 33,656 measurements).

The scatter plot (Figure B.5a) shows the same spread as 
for BOD and FC. However, the agreement between model 
and observations is not as symmetrical as it is for BOD 
and FC, indicating more bias in the TDS model than in 
the other models. On the other hand, the comparison of 
computed and observed pollution classes (Figure B.5b) 
shows a more than 80per cent agreement in pollution 
classes between model results and observations. In 
90 per cent of the grid cells the model computes the 
correct class plus or minus one class.

Total Phosphorus (TP) Loading Model

The testing for phosphorus was somewhat different 
than for BOD, FC or TDS, because in this pre-study the 
model was used only to compute the loadings of total 
phosphorus from lake basins into lakes, not the in-
stream concentrations of phosphorus.

In testing the model, its performance was examined 
through computing TP loads from both lake basins and 
river basins due to insufficient lake data, and because 
the model should perform equally well in computing 
loads from large lake basins as large river basins.

A comparison of calculated versus measured TP 
loadings into selected lakes is given in Figure B.6. Far 
fewer data were used for this comparison than for the 
other water quality parameters. For this selection of 
data, agreement of the model with measurements is 
quite good.

Figure B.3: a) Observed versus calculated (WorldQual) biochemical oxygen demand for the period 1990–2010 for stations 
from Latin America, Africa, and Asia between 1990 and 2010. Vertical streaks of data are an artefact of data collection and 
processing. Units are in mg/l. b) Measured and simulated BOD in-stream concentrations were grouped into three water pollution 
classes which were derived from thresholds given by governments and international organizations. The difference in classes 
between observed and simulated in-stream concentrations was determined and displayed as percentage of grid cells (having 
measurements) in which a difference occurred between the observed class (see Table 3.8) and the computed pollution class. “0” 
indicates that there was no difference between the observed and computed pollution class. Same data set as for Figure B.3 (a).

a) b)
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Figure B.4: a) Observed versus calculated (WorldQual) faecal coliform bacteria for the period 1990–2010 for stations from Latin 
America, Africa, and Asia between 1990 and 2010. Vertical streaks of data are an artefact of data collection and processing. 
Units are in cfu/100ml. b) Measured and simulated FC in-stream concentrations were grouped into three water pollution 
classes which were derived from thresholds given by governments and international organizations. The difference in classes 
between observed and simulated in-stream concentrations was determined and displayed as percentage of grid cells (having 
measurements) in which a difference occurred between the observed class (see Table 3.1) and the computed pollution class. 
“0” indicates that there was no difference between the observed and computed pollution class. Same data set as for Figure 
B.3 (a).

Figure B.5: a) Observed versus calculated (WorldQual) total dissolved solids for the period 1990–2010 for stations from Latin 
America, Africa, and Asia between 1990 and 2010. Units are in mg/l. b) Measured and simulated TDS in-stream concentrations 
were grouped into three water pollution classes which were derived from thresholds given by governments and international 
organizations. The difference in classes between observed and simulated in-stream concentrations was determined and displayed 
as percentage of grid cells (having measurements) in which a difference occurred between the observed class (see Table 3.12) 
and the computed pollution class. “0” indicates that there was no difference between the observed and computed pollution 
class. GEMStat data are not used for this scatter plot so as to avoid overlap with the stations used to estimate TDS background 
concentrations (Section B1.2.9). Also stations influenced by marine saltwater intrusion were omitted.

a) b)

a) b)
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Figure B.6: Observed versus calculated (WorldQual) total phosphorus loads per lake basin or river basin area for the period 
1990–2010 for worldwide stations. Units are in kg/km2/year.
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B2 Water quality standards

To establish the thresholds of water pollution classes 
for FC, BOD and TDS (Tables 3.1, 3.8, 3.12 in Chapter 
3.) the below water quality standards from African, 

Latin American and Asian countries were compiled. 
European and American standards were also 
consulted.

Table B.6: Collected FC water quality standards of different countries.

Description Country Reference

Water quality standards for protected areas, source water, drinking water, 
aquatic fauna, industry, agriculture

China MEP (2002)

Water quality standards for primary contact, irrigation, aquaculture, sailing, 
and animal farming

Costa Rica Mora and Calvo (2010)

Water quality standards for primary contact Europe, EEC WHO (2000)

Water quality standards for bathing and swimming, irrigation South Africa DWA (1996), Britz (2013)

Water quality standards for primary contact Colombia WHO (2000)

Water quality standards for primary contact Cuba WHO (2000)

Water quality standards for primary contact Ecuador WHO (2000)

Water quality standards for primary contact Puerto Rico WHO (2000)

Water quality standards for primary contact USA, California WHO (2000)

Water quality standards for primary contact Venezuela WHO (2000)

Water quality standards for primary contact France WHO (2000)

Water quality standards for primary contact Uruguay WHO (2000)

Water quality standards for primary contact Peru WHO (2000)

Water quality standards for primary contact Brazil WHO (2000)

Water quality standards for primary contact Israel WHO (2000)

Water quality standards for primary contact Japan WHO (2000)

Water quality standards for primary contact Mexico WHO (2000)

Table B.7: Collected BOD water quality standards of different countries.

Description Country Reference

Freshwater standards Brazil Ministry of the Environment, Brazil (1984–2012)

Agriculture water use standards China
Ministry of Agriculture of the People's Republic of 
China + FAO

River water quality Egypt El Bouraie et al. (2011), Egyptian law 48/1982

Drinking water quality and outdoor bathing 
standards

India CPCB (2007–2008)

Freshwater quality standards (fisheries, 
conservation)

Japan Ministry of the Environment, Japan

Freshwater standards Mexico Mexican Official Standard (NOM-001-ECOL-1996)

Water quality standards for drinking water, 
aquatic water, and irrigation water 

Pakistan adopted from WWF (2007)

freshwater species South Africa DWA (1996)

Surface water quality standards Taiwan EPA Taiwan (2010)

Drinking water quality standards Tanzania Environmental Management Act (2004)

Surface water quality standards Thailand Pollution Control Department (2004)
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Table B.8: Collected TDS water quality standards of different countries.

Description Country Reference

Freshwater standards Brazil
Ministry of the Environment, Brazil 
(1984–2012)

Agriculture water use standards China FAO (2013)

River water quality Egypt
Egyptian law 48/1982 in El Bouraie 
et al. (2011) 

Water quality guidelines for irrigation water use FAO Ayers and Westcot (1985)

Water quality standards for irrigation, industrial cooling, 
controlled waste disposal

Japan Ministry of the Environment, Japan

Water quality standards for domestic, industry, and agriculture 
water use

South Africa DWA (1996)

Water quality standards for domestic and irrigation water use Kenya Water Quality Regulations (2006)

Water quality standards for irrigation water use Morocco
Moroccan regulation on irrigation 
water quality (2002)

Water quality standards for drinking water use Oman Victor and Al-Ujaili (1999)

Water quality standards for drinking water, aquatic water, and 
irrigation water

Pakistan
Government of Pakistan (2008), 
WWF (2007)

To establish levels of concern of water quality parameters with respect to inland fisheries, water quality standards 
were consulted (Table 3.7 in Chapter 3). 

Table B.9: Collected water quality standards also with respect to inland fisheries

Reference Water quality parameter

EPD (2011) Chloride

European Commission (2006) BOD, Oxygen

Geneviève M.C. & C.J. Rickwood (2008) Ammonia, Oxygen, pH

LAWA (1998) Ammonia, BOD, Chloride, Oxygen 

Manivanan, R. (2008) BOD

Michigan Water Quality Standards (1994) Oxygen, pH

U.S. EPA (1986, 2015) Ammonia, Chloride, Oxygen, pH

UNECE (1994) Oxygen
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B3 Literature on vulnerable groups

Publication
Continent/country/region 
within country

Most vulnerable groups
(e.g. “women washing 
clothes, children bathing; 
… “)

Other vulnerable groups
For example: “Poor people bathing; 
poor farmers using polluted 
irrigation water;…”

Adeoye et al. (2013) Nigeria

North central children fetching water
women (more “young 
female” than “adult female”)
fetching water

Aiga et al. (2004) Ghana, Ashanti Region
children (2–14 years) 
swimming (play and exercise)

adult men fishing, fetching water, 
bathing

Barbir and Prats 
Ferret (2011)

Mozambique, N’Hambita 
Village, Sofala Province

women body and laundry 
washing

Choy et al. (2014)
Malaysia, Peninsular 
(West) and Sabah (East)

people in the Peninsular 
Malaysia compared to the 
state of Sabah (East Malaysia)

children under 12 years & large 
households (more than 7 family 
members)

Day and Mourato 
(1998)

China, Beijing Region
children playing in and 
around the river

Engel et al. (2005) Ghana, Volta River Basin children

Feachem (1973)
Papua New Guinea, 
Highlands

women journeys to collect 
water

children or teenagers journeys to 
collect water

Gazzinelli et al. 
(1998)

Brazil, Nova União children playing and fishing

Gazzinelli et al. 
(2001)

Brazil, Rua da Grota
female (10–19 yrs.) using 
water for domestic and 
hygienic activities

Kabonesa and Happy, 
March (2003)

Uganda
women using water for 
domestic purposes

children collecting water for 
domestic use

Lindskog and 
Lundquvist (1989)

Malawi, Rift Valley
women collecting water, 
bathing, laundry

children bathing

Manyanhaire and 
Kamuzungu (2009)

Zimbabwe, Mutasa 
District

women collecting water, 
bathing, doing laundry, 
cooking

Mazvimavi and 
Mmopelwa (2006)

Botswana, Ngamiland
men carrying water for 
drinking and cooking

North and Griffin 
(1993)

Philippines, Bicol Region

28% of poorest income 
quintile using water from 
springs, lakes, or rivers as 
main source

second, third and fourth income 
quintile using water from springs, 
lakes, or rivers as main source (20% 
each)

Sow et al. (2011) Senegal, Ndombo village
female adolescents (10–19 
yrs.) bathing, collecting water

women collecting water, household 
activities

Thompson et al. 
(2001)

Kenya, Uganda, Tanzania women drawing water children drawing water

Table B.10: Literature consulted for data on percentage of population coming in contact with polluted water, and for estimating 
the most vulnerable groups to pathogen pollution.
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B4 Lake data

Continent Lake/reservoir Basin area [million km2] Lake surface area [million km2]

Africa Victoria 0.263 0.0670

Africa Tanganyika 0.238 0.0328

Africa Malawi 0.130 0.0296

Africa Turkana 0.073 0.0077

Africa Volta 0.402 0.0074

Asia Balkhash 0.174 0.0174

Asia Issyk-kul 0.010 0.0062

Asia Urmia 0.051 0.0049

Asia Qinghai Lake 0.019 0.0044

Asia Boeng Tonle Chhma 0.058 0.0026

Europe Baikal 0.584 0.0317

Europe Ladoga 0.271 0.0177

Europe Onega 0.054 0.0098

Europe Vaenern 0.048 0.0056

Europe Kuybyshevskoye 1.187 0.0050

North America Superior 0.207 0.0819

North America Huron 0.575 0.0597

North America Michigan 0.180 0.0573

North America Great Bear Lake 0.145 0.0305

North America Great Slave Lake 1.006 0.0278

South America Itaparica 0.497 0.0087

South America Titicaca 0.057 0.0082

South America Lagoa Mirim 0.046 0.0039

South America Tucurui 0.757 0.0034

South America Itaipu 0.840 0.0024

Table B.11: Data for lakes used in Chapter 3.
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Appendix C
C1 Case study 4 – Chao Phraya 

Table C.1: Water Quality Index in the Chao Phraya River Basin and Tha Chin River Basin (DO = dissolved oxygen, BOD = 
biological oxygen demand, 	 TC = total coliform bacteria, FC = fecal coliform bacteria, NH3 – N = ammonia nitrogen).

Min - Max, Median, and Percentage*

Water Body WQ Class
DO 
(mg/l)

BOD (mg/l)
TC
(MPN/100 ml)

FC 
(MPN/100 ml)

NH3 – N
(mg/l)

Upper Chao 
Phraya

2

3.2 – 8.2

5.4

18% (5/28)

0.7 – 2.8

1.4

57% (16/28)

450 - >160,000

6,000

50% (14/28)

<180 – 54,000

1,350

43% (12/28)

ND – 0.45

0.12

100% (28/28)

Central Chao 
Phraya 

3

1.1 – 7.6

3.1

20% (4/20)

0.9 – 4.4

2.0

55% (11/20)

3,300 – 35,000

7,900

85% (17/20)

200 – 17,000

1,300

90% (18/20)

<0.02 – 0.51

0.19

95% (19/20)

Lower Chao 
Phraya

4

0.1 – 5.5

1.2

38% (9/24)

1.8 – 7.7

4.1

50% (12/24)

1,100 - >160,000

24,000

46% (11/24)

400 - >160,000

7,900

29% (7/24)

0.20 - 2.30

0.85

29% (7/24)

Upper Tha 
Chin

2

1.8 – 7.5

3.1

19% (3/16)

1.1 – 8.2

3.8

6% (1/16)

200 – 54,000

4,900

63% (10/16)

120 – 4,900

780

53% (8/15)

<0.10 – 0.18

0.10

100% (16/16)

Central Tha 
Chin

3

1.0 – 7.0

2.4

25% (3/12)

1.2 – 8.2

4.2

17% (2/12)

2,700 – 160,000

11,000

67% (8/12)

450 – 92,000

1,200

75% (9/12)

<0.10 – 0.49

0.10

100% (12/12)

Lower Tha 
Chin

4

0.7 – 5.6

2.2

50% (14/28)

1.4 – 9.6

4.5

43% (12/28)

3,300 – 540,000

28,500

39% (11/28)

200 – 240,000

4,900

32% (9/28)

<0.10 – 2.09

0.61

39% (11/28)

Standard Class 2 > 6.0 < 1.5 < 5,000 < 1,000 < 0.5

Standard Class 3 > 4.0 < 2.0 < 20,000 < 4,000 < 0.5

Standard Class 4 > 2.0 < 4.0 - - < 0.5

* Percentage of the measurement that meets the standard of surface water quality (a total of the standardized measurement/a total of all 
measurements) (Source: Thailand State of Pollution Report 2013, PCD)
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C2 Case study 5 – Vaal

Table C.2: Resource Quality Objectives (RQOs) for salinity in priority Resource Units in the Upper Vaal WMA (only a few results 
are illustrated here).

RU RQO
Indicator/
measure

Numerical 
limit

95th %ile Context of the RQO
Threshold 
of Potential 
Concern (TPC)

RU67

Salts need to 
be improved to 
levels that do 
not threaten 
the ecosystem 
and to provide 
for users.

Electrical 
conductivity* ≤ 111 mS/m 79.1

Local industrial activities are having a 
negative impact on the water quality 
causing salinization of the Taaibosspruit. 
Salt concentrations should be improved 
to a D category. Where available the 95th 
percentile of observed or modelled data 
has been provided. The 95th percentile 
threshold is a standard procedure 
which has been selected to remove the 
extreme values considered to represent 
outliers.

98 mS/m

RU71

Salts need to 
be improved to 
levels that do 
not threaten 
the ecosystem 
and to provide 
for users.

Electrical 
conductivity* ≤ 111 mS/m 87

Salts: Upstream mining activity releases 
have causes acid mine drainage 
conditions in the system. The salts 
need to be returned to a state where 
it is not having a serious impact on the 
ecosystem, i.e. a D category. Where 
available the 95th percentile of observed 
or modelled data has been provided. 
The 95th percentile threshold is a 
standard procedure which has been 
selected to remove the extreme values 
considered to represent outliers.

98 mS/m

RU73

Salts need to 
be improved to 
levels that do 
not threaten 
the ecosystem 
and to provide 
for users.

Electrical 
conductivity* ≤ 111 mS/m 90.5 Salt loads associated with acid mine 

drainage impacts from upstream 
mining activities are of concern for the 
ecosystem and also for downstream 
users. The salt concentrations should 
be managed to a D category. Where 
available the 95th percentile of observed 
or modelled data has been provided. 
The 95th percentile threshold is a 
standard procedure which has been 
selected to remove the extreme values 
considered to represent outliers.

98 mS/m

Sulphates* ≤ 500 mg/L 132 350 mg/L

RU75

Salts need to 
be improved to 
levels that do 
not threaten 
the ecosystem 
especially fish 
and to provide 
for users. 

Electrical 
conductivity* ≤ 85 mS/m 84

Excessive salt in this system causes 
salinisation of agricultural land and also 
fouling of industries. It is also a potential 
problem for maintenance of the Orange-
Vaal largemouth yellowfish population, 
recruitment of which may be sensitive 
to high salt loads. Salt concentrations 
must be improved to a C category. 
Where available the 95th percentile of 
observed or modelled data has been 
provided. The 95th percentile threshold 
is a standard procedure which has been 
selected to remove the extreme values 
considered to represent outliers.

70 mS/m

Sulphates* ≤ 200 mg/L 173 140 mg/L
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